

The Tissue Tool Box

IHC Critical Assay Performance Controls

Søren Nielsen, Director, NordiQC

Agenda and focus areas

- What is recommended and best practice for IHC controls in diagnostic IHC?
- What are the potentials and limitations for the use of IHC controls ?
- How can IHC controls be used by laboratories and IHC stakeholders?
 - How to use IHC controls to implement new markers.
 - How to use IHC controls to monitor IHC assay consistency.
 - How to use IHC controls to adress inter and intra test accuracy (e.g. EQA).

The role and concept behind ICAPCs -

IHC Critical Assay Performance Controls

... The IHC biomarker protocol trap – Caution: not for faint-hearted lab personel !!!!!

The right control material will expose right or wrong choices

Importance of IHC controls have been neglected....

Documentation of Diagnostic Cytopathology, Vol 39, No 4 2011 Immunocytochemistry Controls in the Cytopathologic Literature: ne A Meta-Analysis of 100 Journal Articles

Carol Colasacco, м.L.I.S., S.C.T.(A.S.C.P.), С.T.(I.A.C.), ¹* Sharon Mount, м.D., ^{1,2} and Gladv

ICC Controls in the Literature

Fig. 1. Description of immunocytochemistry controls in articles reviewed.

Absent: Controls were not mentioned.

Vague: Statement such as "appropriate positive and negative controls were included."

Identical: Controls identical to study samples were described.

Other: Controls were dissimilar or partially similar (i.e., tissue control with smears or tissue control with cell block and ThinPrep samples run), or samples were too scant to include controls.

> 70 % of publications based on IHC do not describe controls used to verify data and conclusions....

Level same in 2024....

PAX8 expression in breast cancer – true of false...?

Central for subtyping of unknown primary carcinoma; Ovary, uterine, kidney...

But....

Can PAX8 expression be seen in breast carcinoma??

Right choice, right use and results reported in positive and negative IHC control tissues needed to verify data

FIGURE 1

Aberrant Immunostaining of Breast Carcinoma by MRQ-50 PAX8 Antibody

Singh, Kamaljeet; Hansen, Katrine; Quddus, M. Ruhul

Applied Immunohistochemistry & Molecular Morphology28(4):e37-e38, April 2020.

doi: 10.1097/PAI.000000000000682

Photomicrographs from 2 breast carcinomas with aberrant PAX8 expression by MRQ-50 clone. On staining with hematoxylin and eosin (A, D) both tumors were high grade with necrosis. Immunohistochemistry for PAX8 with MRQ-50 antibody (B, E) showed nuclear positivity in tumor cells and lymphocytes (arrow). PAX8 IHC with BC12 clone (C, F) did not stain tumor or lymphocytes.

Positive tissue control 1 Fallopian tuba

Positive tissue control 2 Kidney

Tumour type 1 Ovarian carc.

Tumour type 2 Renal cell carc.

Negative tissue control 1 Tonsil

NordiQC Assessments of PAX8 Immunoassays

Rasmus Røge, MD,*† Ole Nielsen, HT,‡ Michael Bzorek, HT,§ Søren Nielsen, HT,* and Mogens Vyberg, MD*†

N-terminal PAX8 antibody crossreacts with PAX5

HOMEO DOMAIN

121

114

353 (

412

mmunogen

Residues 1-212

70% Homology

sidues 318-420

L Moretti et al

TAEY

EYSGNAYCHTPY

MVPGSEFSGSPYSHPOY

Level of analytical specificity

ASSATAG

BC12 / SP348

MRQ-50 / pAb

SP348 (&BC12)

PAX8 expression in breast cancer – true of false...?

Right choice, right use and results reported in positive and negative IHC control tissues needed to verify data

NordiQC data – PAX8

Table 1. Antibodies and assessment marks for PAX8, run 68

Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	POOF	Suff.*	OK-
mAb clone BC12*	9 4	Biocare Zytomed Systems	-	3	7	3	23%	-
mAb clone MRQ-50	16	Cell Margue	-	8	6	2	50%	
mAb clone PAX8R1	1	Abcam	-	-	1	-	-	-
mAb clone ZM28	1	Zeta Corporation	-	1	-	-	-	-
rmAb clone EP298 ⁵ *	1	Epitomics ⁵	-	1	-	-	-	-
rmAb clone EP331*	10 4	Cell Marque Epitomics	-	5	8	1	36%	-
rmAb clone SP348 *	146	Abcam Gennova Spring Bioscience	102	31	9	4	91%	70%
rmAb clone ZR-1 *	2 2	Zeta Corporation BioSite	1	-	2	1	-	-
rmAb clone BP6157*	2	Biolynx	-	1	1	-	-	
rmAb clone QR016*	7	Quartett	3	3	1	-	86%	43%
pAb, 10336-1-AP	11	Proteintech	-	1	3	7	9%	-
pAb, 363A-15	1	Cell Marque	-	-	1	-	-	-
pAb, CP379 AK	3	Biocare	-	-	1	2	-	-
pAb, RBK047	3	Zytomed Systems Diagomics	-	-	3	-	-	-
Conc total	223		106	54	43	20	72%	48%
Ready-To-Use antibodies			1				Suff.1	OR. ²
mAb clone MRQ-50, 760-4618 (VRPS) ³	6	Ventana/Roche	-	-	-	6	0%	0%
mAb clone MRQ-50, 760-4618 (LMPS) ⁴	49	Ventana/Roche	-	3	34	12	6%	0%
rmAb clone, EP331* 760-6077(VRPS) ³	3	Ventana/Cell Marque	-	1	2	-	-	-
rmAb clone, EP331* 760-6077(LMPS) ⁴	11	Ventana/Cell Marque	-	4	6	1	36%	0%
mAb clone, BC12* API438	6	Biocare Medical	-	2	4	-	33%	0%
mAb clone IHC008 PII77R06	3	DCS	-	-	3	-	-	-
rmAb clone ZR-1* Z2202	2	Zeta corporation	-	-	1	1	-	-
rmAb clone SP348 * M6481	3	Spring Bioscience	2	1	-	-	-	-
rmAb clone 2774R ANB31	1	Biogenex	-	-	1	-	-	-
rmAb clone GR002* GT210202	1	GeneTech	1	-	•	-	-	-
rmAb clone QR016* P-P008	2	Quartett	1	1	-	-	-	-
rmAb clone EP331* 363M/AC0338	12	Cell Marque	-	3	7	2	25%	0%
rmAb clone SP348* 363R-38	4	Cell Marque	2	1	1	-	-	-
mAb clone MRQ-50, 363M-10/17/18	24	Cell Marque	-	5	13	6	21%	0%
pAb clone 363A-17/18 363A17/18	4	Cell Marque	-	-	3	1	-	-
MAD-Clone MRQ-50, MAD-000550QD	6	Master Diagnostica	-	4	1	1	67%	0%
mAb clone RM436* 8257-C010	2	Sakura Finetek	1	1	-	-	-	-
rmAb clone IHC048*	1	GenomeMe	-	-	1	-	-	-
Clone MXR013*	2	Celnovte	-	1	-	-	-	•
RMA-1024 Clone H5A8	1	DaTe Bioengineering	1	-		-	-	
DTBL0220101	1	Technology	1	-	-	-		
Unknown	1		-	•	•	1	-	-
RTU total	145		10	27	77	31	26%	8%
Total	368		116	81	120	51		
Proportion			32%	22%	32%	14%	54%	

Proportion of Optimal Results (≥5 assessed protocols).

3) Vendor Recommended Protocol Settings (VRPS) to a specific RTU product applied on the vendor recommended platform(s) (≥5 assessed protocols).

Laboratory Modified Protocol Settings (LMPS) to a specific RTU product (≥5 assessed protocols).

Ab terminated by vendor.
 *Clones that do not show cross reactivity with PAX5.

References central for the area of IHC controls

The "Kick-off" phase for

"Standardization of IHC controls"

Definitions and requirements Usage Potentials / Limitations Perspectives **R**EVIEW ARTICLE

Appl Immunohistochem Mol Morphol . Volume 22, Number 4, October 2014

Standardization of Negative Controls in Diagnostic Immunohistochemistry: Recommendations From the International Ad Hoc Expert Panel

Emina E. Torlakovic, MD, PhD,*†‡ Glenn Francis, MBBS, FRCPA, MBA, FFSc (RCPA),\$||¶ John Garratt, RT,†‡# Blake Gilks, MD, FRCPC,†‡** Elizabeth Hyjek, MD, PhD,* Merdol Ibrahim, PhD,†† Rodney Miller, MD,‡‡ Søren Nielsen, HT, CT,\$\$|| || Eugen B. Petcu, MD, PhD,\$ Paul E. Swanson, MD,¶¶ Clive R. Taylor, MD, PhD,## and Mogens Vyberg, MD\$\$|| ||

REVIEW ARTICLE

Appl Immunohistochem Mol Morphol • Volume 23, Number 1, January 2015

Standardization of Positive Controls in Diagnostic Immunohistochemistry: Recommendations From the International Ad Hoc Expert Committee

Emina E. Torlakovic, MD, PhD,*† Søren Nielsen, HT, CT,‡§ Glenn Francis, MBBS, FRCPA, MBA, FFSc (RCPA), ||¶# John Garratt, RT,†** Blake Gilks, MD, FRCPC,††
Jeffrey D. Goldsmith, MD,‡‡ Jason L. Hornick, MD, PhD,*§§ Elizabeth Hyjek, MD, PhD,* Merdol Ibrahim, PhD, || || Keith Miller, FIBMS, || || Eugen Petcu, MD, PhD, ||
Paul E. Swanson, MD,¶¶## Xiaoge Zhou, MD,***††† Clive R. Taylor, MD, PhD,‡‡‡ and Mogens Vyberg, MD‡§

12

Tissue controls

Reagent and <u>tissue</u> controls are necessary for the validation of immunohistochemical staining results.

 Tissue controls are the most valueable tool to monitor the specificity and sensitivity for IHC

- Internal positive and negative tissue control
 - Cells/structures within the patient material
- External positive and negative tissue control
 - Slide next to patient material

How to use internal tissue controls

Appl Immunohistochem Mol Morphol • Volume 22, Number 4, April 2014

SMAD4

SMARCB1/INI1

Standardization of Negative Controls

Stromal and benign cells

Stromal and benign cells

TABLE 2. Examples of IHC Assays Where Preferential Use of Internal Positive Controls Recommended

IHC Assay	Use	Cor	nments		
Cytokeratin 5	Demonstration of basal cells in glandular structures of prostate to differentiate between benign (positive) and malignant (negative) glands Absence of expression in the cells of colon or endometrial adenocarcinoma is abnormal; patients referred for molecular testing to rule out Lynch Syndrome	Interpretat results in directly clear der internal control Tested sam complete no norm present Interpretat results in directly clear der internal control	tion of the in the tumor depends on nonstration of positive inple may be ely negative if all tissue is tion of the in the tumor depends on nonstration of positive	Control of the second s	
rget analyte	Application		Internal control	o confirm "true" loss	
P1, MTAP	Mesothelioma		Stromal cells		
3	Gynecological carc.	Gynecological carc.		Stromal cells	
EN		Lung and gynecological carc.			
EIN	Lung and gynecologi	cal carc.	Stromal and beni	gn cells	

Pancreas and GI carc.

Sarcoma, PNST, carcinoma..

Internal postive tissue controls; Principally ideal as processed identically to patient relevant material / target evaluated

If internal positive control is neg or dubious - test is repeated.

Limitations of internal tissue controls

staining for CD5 of the B-CLL no. 5 using same protocol as in Figs. 1a - 4a.

The majority of the neoplastic cells show a moderate and distinct staining reaction, while the infiltrating normal T-cells normal T-cells are clearly demonstrated. show a strong staining reaction.

Fig. 4b. Insufficient staining for CD5 of the B-CLL using same protocol as in Figs. 1b - 3b - same field as in Fig. 4a. The neoplastic cells are virtually negative and only the

Fig. 2a. Optimal CD15 staining of the Hodgkin lymphoma no Fig. 2b. CD15 staining of the Hodgkin lymphoma no 2 (NS) using same protocol as in Fig. 1b. Only few Reed-Sternberg 2 (NS) using same protocol as in Fig. 1a. The Reed-Sternberg and Hodgkin cells show a strong membranous and Hodgkin cells show a weak staining - same field as in

Fig. 2a.

staining and a dot-like positivity.

Fig. 3a. Optimal ER staining of the breast ductal carcinoma no. 3 with 60 - 80 % cells positive. A weak but distinct nuclear staining is seen in the appropriate proportion of the protocol as in Figs. 1b and 2b - same field as in Fig. 3a. neoplastic cells. Same protocol as in Figs. 1a and 2a.

carcinoma no. 3 with 60 - 80 % cells positive using same Only dispersed neoplastic cells show an equivocal staining Internal positive tissue controls;

In general not applicable as positive controls due to levels of expression may not be relevant for level of test calibration

e.g. CD5, CD15, CD34, CD45, CD56, S100, ER, PD-L1 etc

CD5; Tonsil Mantle zone **B-cells** Critical control

Critical tissue controls = ICAPCs

IHC Critical Assay Performance Controls (ICAPCs)

are basically human positive control tissues with

- clinical relevant range of target analyte (antigen) especially with low limit detection
- well characterized expression pattern preferable normal tissues
- predictable levels and specified cellular and architectural localization

	High expression	Low expression	No expression	
Purpose	Right antibody	Right analytical sensitivity	Basic right specificity	
Appl Immu Standa Immuno Inf Emina E. Torla MBA, FI Jeffrey D. Gol Merdo Paul E. Swa	REVIEW ARTICLE nohistochem Mol Morphol • Volume 23, Num rdization of Positive Controls histochemistry: Recommenda cernational Ad Hoc Expert Con kovic, MD, PhD,*† Soren Nielsen, HT, CT,‡§ Glenn Sc (RCPA), ¶# John Garratt, RT,†** Blake Gilk, dsmith, MD,‡1 Jason L. Hornick, MD, PhD,*§ Eliz I Ibrahim, PhD, ¶ Keith Miller, FIBMS. ¶ Eugen I unson, MD,¶¶## Xiaoge Zhou, MD,***††† Clive R. and Mogens Vyberg, MD‡§	aber 1, January 2015 in Diagnostic tions From the mmittee Francis, MBBS, FRCPA, s, MD, FRCPC,†† abeth Hyjek, MD, PhD,* etcu, MD, PhD,∥ Taylor, MD, PhD,‡‡‡	CD5; Tonsil Mantle zo B-cells Critical control	one

Main elements to develop, verify & validate IHC assays

The journey from an antibody to a diagnostic IHC assay with a specific purpose

- 1. Calibration of IHC assay and identification of best practice protocol clone, titre, retrieval etc
- 2. Evaluation of robustness of the IHC assay impact on pre-analytics
- 3. Evaluation of analytical sensitivity / specificity
- 4. Identification of IHC performance controls providing information that the established level of detection is obtained in each test performed in daily practice.

Based on selection and use of appropriate external tissue controls

External tissue control tool box

E Torlakovic et al. AIMM, 2017; 25:227-230 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 4

External tissue control tool box

E Torlakovic et al. AIMM, 2017; 25:227-230 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 4

Inspirational set-up to address issue of specificity and impact on pre-analytics

EPCAM calibration

Tissue cores are used to identify best practice protocol providing highest signal-to-noise ratio for qualitative IHC markers

Source: NordiQC and Aalborg University Hospital

CD105 calibration

Tissue cores are used to identify best practice protocol providing impact on on pre-analytics

Source: NordiQC (Ole Nielsen) and Aalborg University Hospital

CD52 calibration

Tissue cores are used to identify best practice protocol providing impact on on pre-analytics

Source: NordiQC and Aalborg University Hospital

CD45 calibration

Tissue cores are used to identify best practice protocol providing impact on on pre-analytics

- 1. Not affected by pre-analytics
- 2. IHC protocol found

3. Liver and tonsil as Controls....???

Which reaction pattern indicates optimal result?

Source: NordiQC and Aalborg University Hospital

Test Performance Characteristics - TPCs

Test performance characteristics;

Which staining pattern characterizes an optimally calibrated IHC assay for a specific purpose?

Analytical sensitivity Analytical specificity Precision / reproducibility of IHC assay

Which tissues / cellular structures show the clinical relevant range of the target analyte with focus on required low level of demonstration – <u>CRITICAL CONTROLS - ICAPCs</u>?

Appendix

CD56

Tonsil

Test A

CD56

CD45

Test A

Test B

Test B

Tonsil

B-CLL

NET

CD56

CD45

Tonsil

B-CLL

<u>Liver</u>

NET

<u>Tonsil</u>

Tissues/cells with only high expression will not identify:

- 1. A poorly calibrated IHC assay
- 2. A reduced analytical sensitivity of an optimally calibrated IHC assay assay reproducibility/consistency
- 3. A reduced expression level of changed tissue processing settings

If an IHC test is used to identify the target antigen being expressed at different levels, controls must reflect this!

iCAPCs - concept

IHC Critical Assay Performance Controls (iCAPCs)

Which tissues are recommended ?

What is the expected staining pattern ?

Which tissues / cells are critical ?

Right antibody Appropriate level of sensitivity Guidance level of specificity REVIEW ARTICLE

Appl Immunohistochem Mol Morphol • Volume 23, Number 1, January 2015

Standardization of Positive Controls in Diagnostic Immunohistochemistry: Recommendations From the International Ad Hoc Expert Committee

Emina E. Torlakovic, MD, PhD,*† Søren Nielsen, HT, CT,‡§ Glenn Francis, MBBS, FRCPA, MBA, FFSc (RCPA), ||¶# John Garratt, RT,†** Blake Gilks, MD, FRCPC,†† Jeffrey D. Goldsmith, MD,‡‡ Jason L. Hornick, MD, PhD,*§§ Elizabeth Hyjek, MD, PhD,* Merdol Ibrahim, PhD, || Keith Miller, FIBMS, || Eugen Petcu, MD, PhD, || Paul E. Swanson, MD,¶¶# Xiaoge Zhou, MD,***††† Clive R. Taylor, MD, PhD,‡‡‡ and Mogens Vyberg, MD‡§

FIGURE 1. Pan-keratin iCAPC. A, Appendix: virtually all columnar epithelial cells must show a moderate to strong predominantly cytoplasmic staining reaction (a membranous accentuation will typically be seen). B, Liver: the vast majority of hepatocytes must show at least weak to moderate cytoplasmic staining reaction with a membranous accentuation (LLOD). C, Tonsil: all squamous epithelial cells must show a moderate to strong cytoplasmic staining reaction. Cytokeratin (CK)-positive interstitial reticulum cells (CIRCs) with dendritic/reticular pattern can show a weak to moderate cytoplasmic staining reaction (LLOD). iCAPC indicates immunohistochemistry critical assay performance controls; LLOD, low limit of detection.

FIGURE 7. TTF-1 iCAPC. A, Thyroid: virtually all epithelial cells must show a strong nuclear staining reaction. B, Lung: virtually all pneumocytes and basal cells of terminal bronchi must show a moderate to strong nuclear staining reaction. Columnar epithelial cells of terminal bronchi must show an at least weak nuclear staining reaction (LLOD). C, Tonsil: no staining reaction must be seen. iCAPC indicates immunohistochemistry critical assay performance controls; LLOD, low limit of detection.

FIGURE 8. CDX-2 iCAPC. A, Appendix: virtually all epithelial cells must show a strong nuclear staining reaction. A weak cytoplasmic staining reaction in addition to strong nuclear staining is often present. B, Pancreas: the majority of epithelial cells of intercalated ducts must show a weak to moderate nuclear staining reaction (LLOD). C, Tonsil: no staining reaction must be seen. iCAPC indicates immunohistochemistry critical assay performance controls; LLOD, low limit of detection.

Examples for 17 markers

Generel expected patterns

High expression (Right antibody)

Low expression (Appropriate sensitivity)

No expression (Appropriate specificity)

Which tissue Which cells Which extension Which intensity

NordiQC IHC tissue control atlas

VordiQC

Info Modules Assessments Protocols Controls Events SN

Recommended controls

		Search:
Epitope	Tissues	♦ Actions ♦
ALK (lung)	Appendix/colon, Tonsil	See controls
AMACR	Kidney, Prostate	See controls
ASMA	Appendix/colon, Liver	See controls
Bcl-2	Tonsil	See controls
Bcl-6	Tonsil	See controls
BSAP	Hodgkin lymphoma, Tonsil	See controls
C-MYC	Appendix/colon, Tonsil	See controls
CD3	Appendix/colon, Tonsil	See controls
CD4	Liver, Tonsil	See controls
CD5	Tonsil	See controls
CD8	Appendix/colon, Tonsil	See controls
CD10	Kidney, Tonsil	See controls
CD15	Kidney, Tonsil	See controls
CD19	Appendix/colon, Tonsil	See controls
CD20	Appendix/colon, Tonsil	See controls
CD23	Tonsil	See controls
CD30	Tonsil	See controls
CD31	Appendix/colon, Liver, Tonsil	See controls

Available for NordiQC participants Tissues Purpose Reaction patterns Online scans accessible

NordiQC IHC tissue control atlas

NordiQC

Info • Modules • Assessments Protocols Controls Events • <u>SN</u>

CDX2 - CDX2

Control type	Positive tissue control High expression level	Positive tissue control Low expression levels	Negative tissue control
Tissue	Appendix/colon	Pancreas	Tonsil
Description	All epithelial cells must show a strong nuclear staining reaction. Note, a weak cytoplasmic staining reaction in CDX2 positive cells can be seen and should be accepted if signal-to- noise ratio otherwise is acceptable.	The vast majority of epithelial cells of intercalated ducts must show a weak to moderate nuclear staining reaction.	No staining reaction should be seen. Note, dispersed lymphocytes can show a faint nuclear staining reaction.
Example	Click to enlarge	Click to enlarge	Click to enlarge
		Back	

Available for NordiQC participantsTissuesPurposeReaction patternsOnline scans accessible

NordiQC IHC tissue control atlas

The vast majority of epithelial cells of intercalated ducts must show a weak to moderate nuclear staining reaction.

Main elements to develop & validate IHC assays

The journey from an antibody to a diagnostic IHC assay with a specific purpose

- 1. Calibration of IHC assay and identification of best practice protocol clone, titre, retrieval etc
- 2. Evaluation of robustness of the IHC assay impact on pre-analytics
- 3. Evaluation of analytical and diagnostic sensitivity/specificity
- 4. Identification of IHC performance controls providing information that the established level of detection is obtained in each test performed in daily practice.

Based on selection and use of appropriate external tissue controls

External tissue control tool box

E Torlakovic et al. AIMM, 2017; 25:227-230 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 4

Sample set to validate/verify IHC assays

Diagnostic / Analytical validation

- Laboratory developed tests (concentrates and RTU's being applied modified to official protocol[#])
- Non-predictive markers (- ER, PD-L1, HER-2) (Predictive markers CAP 2024; 20 pos. + 20 neg.)
 - CLSI*: 20 cases per entity relevant (pos, neg)
 - CAP**: 10 positive, 10 negative

The validation set should include high and low expressors for positive cases when appropriate and should span the expected range of clinical results (expression levels) for markers that are reported quantitatively.

Ad-Hoc: 10 strongly pos, 10 interm. to low, 5 neg.

Number perhaps less important compared to use of tissue with full range of expression patterns reflecting the diagnostic use and purpose of test
COLLEGE of AMERICAN PATHOLOGISTS Laboratory Quality Solutions

Principles of Analytic Validation of Immunohistochemical Assays: Guideline Update

Statements and Strengths of Recommendations

SUMMARY OF STATEMENTS

Gui	deline Statement	Category
1.	Laboratories must analytically validate all laboratory developed immunohistochemistry (IHC) assays and verify all FDA-cleared IHC assays before reporting results on patient tissues. <i>Note:</i> A validation study design may include but is not necessarily limited to, such means as the following: Comparing the new assay's results with the expected architectural and subcellular localization of the antigen Comparing the new assay's results with the results of prior testing of the same tissues with a validated/verified assay in the same laboratory Comparing the new assay's results with the results of the same tissues in another laboratory using a validated/verified assay Comparing the new assay's results with results of a non-immunohistochemical method Comparing the new assay's results with results from testing the same tissues in a laboratory using a validated/verified assay Comparing the new assay's results with the results from testing the same tissues in a laboratory using a validated/verified assay Comparing the new assay's results with the results from testing the same tissues in a laboratory that performed testing for a clinical trial Comparing the new assay's results against percent positive rates documented in published clinical trials Comparing the new assay's results to IHC results from cell lines that contain known amounts of protein Comparing reviously graded tissue challenges from a formal proficiency testing program (if available) with the graded responses	Good Practice Statement
2.	For initial analytic validation/verification of every assay used clinically, laboratories should achieve at least 90% overall concordance between the new assay and the comparator assay or expected results.	Strong Recommendation
3.	For initial analytic validation of nonpredictive laboratory-developed assays, laboratories should test a minimum of 10 positive and 10 negative tissues. When the laboratory medical director determines that fewer than 20 validation cases are sufficient for a specific marker (eg, rare antigen), the rationale for that decision needs to be documented. <i>Note:</i> The validation set should include high and low expressors for positive cases when appropriate and should span the expected range of clinical results (expression levels) for markers that are reported using either a semiquantitative or numerical scoring system.	Good Practice Statement

© 2024 College of American Pathologists. All rights reserved

Arch Pathol Lab Med—Vol 148, June 2024

Principles of Analytic Validation of Immunohistochemical Assays

CAP Laboratory Improvement Programs

Guideline Update

Jeffrey D. Goldsmith, MD; Megan L Troxell, MD, PhD; Sinchita Roy-Chowdhuri, MD, PhD; Carol F. Colasacco, MLIS, SCT(ASCP); Mary Elizabeth Edgerton, MD, PhD; Patrick L. Fitzgibbons, MD; Regan Fulton, MD, PhD; Thomas Haas, DO; Patricia L. Kandalaft, MD; Tanja Kalicanin, MLS(ASCP)^{CM}; Christina Lacchetti, MHSc; Patti Loykasek, HTL(ASCP); Nicole E. Thomas, MPH, CT(ASCP)^{CM}; Paul E. Swanson, MD; Andrew M. Bellizzi, MD

Guideline Revision

This guideline will be reviewed every 4 years, or earlier in the event of publication of substantive and high-quality evidence that could potentially alter the original guideline recommendations. The status of the guideline can be found on www.cap.org.

www.cap.org/protocols-and-guidelines/cap-guidelines/current-cap-guidelines/principles-of-analytic-validation-of-immunohistochemical-assaysologists (cap.org)

The validation set should include:

- Positive, negative, and low-positive tissues that are tailored to the intended clinical use of the assay.
- Should not be all normal tissues.
- Positive and negative cells on the same section could be scored as separate challenges

For initial analytic validation of **non-predictive laboratory developed assays**¹, laboratories should test a minimum of **10 positive and 10 negative tissues**.

For initial analytic validation of **predictive laboratory developed assays**¹, laboratories should test a minimum of **20 positive and 20 negative tissues for each scoring system** (e.g. PD-L1 and HER2 (classical and low).

For initial analytic validation/verification of every assay used clinically, laboratories should achieve at least **90% overall concordance between the new assay and the comparator assay or expected results**.

¹ Concentrated primary antibodies or RTU's performed by significantly modified protocols.

For initial analytic <u>verification</u> of all <u>unmodified FDA-approved predictive marker assays</u>, laboratories should <u>follow the</u> <u>specific instructions provided by the manufacturer</u>. If the package insert does not delineate specific instructions for assay verification, the laboratory should test a minimum of 20 positive and 20 negative tissues.

Laboratories should confirm assay performance with at least 2 known positive and 2 known negative tissues when an existing validated assay has changed in any one of the following ways:

- Antibody dilution
- Antibody vendor (same clone)
- Incubation or retrieval times (same method)

Laboratories should confirm assay performance by testing a sufficient number of tissues to ensure that assays consistently achieve expected results when any of the following have changed:

- Fixative type
- Antigen retrieval method (eg, change in pH, different buffer, different heat platform)
- Detection system
- Tissue processing equipment
- Automated testing platform

CAP* 2024 guidelines for IHC assay validation/verification - personal read

	Predictive markers		Non-predictive markers		
	CDx / RTU Type II Conc. Type II		RTU Type I	Conc. Type I	
As per instruction	Verification as insert	NA	Verification as insert	NA	
Significantly modified*	20 pos / 20 neg	20 pos / 20 neg	10 pos / 10 neg	10 pos / 10 neg	
Slightly modified**	2-5 pos / 2-5 neg	2-5 pos / 2-5 neg	2-5 pos / 2-5 neg	2-5 pos / 2-5 neg	

*Significantly modified; new clone, change in retrieval method/buffer, detection system, IHC platform, fixative, cytology.....

**Slightly modified;

Conc; titre of conc., change of clone vendor, change of incubation time, change of HIER time..... RTU ; change of incubation time, change of HIER time.....

1; incubation or retrieval time changed 2; retrieval method or detection system changed

1; incubation or retrieval time changed 2; retrieval method or detection system changed

Use of samples for technical / analytical validation of IHC

CK-PAN - mAb AE1/AE3 – Prot. 1

CK-PAN - mAb AE1/AE3 – Prot. 2

Use of samples for technical / analytical validation of IHC

CK-PAN - mAb AE1/AE3 - Prot. 1

CK-PAN - mAb AE1/AE3 – Prot. 2

If access to ICAPCs these must be included to validate/verify IHC test performance

If dynamic range is known, this must be encountered when test material is selected

IHC tests must be fit-for-purpose....

E Torlakovic et al. AIMM 2017;25:4-11 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 1

An IHC assay can have one or more purposes and it is crucial to secure the need is fulfilled

	Purpose* I	Purpose II	Comments
ALK	ALCL	Lung adenocarcinoma with ALK mutation	
CD34	Dermatofibrosarcoma protuberans	Stem cells / leukemia	Different pre-anal
CD56	Neuroendocrine differentiation	Lymphoma classification	
CD117	GIST	Stem cells / leukemia	Different pre-anal
CK5	PIN versus prostate cancer	Lung squamus cell carc vs adenocarcinoma	
CK-PAN	CUP*	Sentinel node status - carcinoma	For CUP a range of expr.
GATA3	Breast carcinoma – CUP	Urothelial carcinoma - CUP	
lgK / lgL	Clonality myeloma (Cytopl)	Clonality lymphoma (Membrane)	
Melan A	Melanoma	Sex cord tumours [¤]	[¤] mAb A103 only
PAX5	B-cell lineage marker (Lymphoma)	Hodgkin	
SOX10	Melanoma - CUP	TNBC - CUP	
TTF1	Lung ad. carc CUP	Lung squamus cell carc vs adenocarcinoma	

Identification of purpose of the test

E Torlakovic et al. AIMM 2017;25:4-11 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 1

An IHC assay can have one or more purposes and it is crucial to secure the need is fulfilled

IHC for CK5

- 1. To differentiate prostate gland hyperplasia/PIN from prostate adenocarcinoma
- 2. Identify squamous cell differentiation in lung carcinomas
- 3. ...

Prostate sample

Lung sample

Same protocol applied for two different purposes and meeting the requirements

(source; www.nordiqc.org)

Identification of purpose of the test

E Torlakovic et al. AIMM 2017;25:4-11 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 1

Typically **low** antigen

Typically <u>high</u> antigen

expression level

Typically <u>low</u> antigen expression level

IHC for ALK

Identification of purpose of the test

E Torlakovic et al. AIMM 2017;25:4-11 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 1

48

Challenges for technical / analytical validation of IHC

- Limited access to relevant tissues rare incidences
 ALK (lung), ROS1, Myogenin..
- New markers not described in details no data on test performance characteristics
 SATB2, Claudin-4, PRAME, TRPS1....
- 3. Limited access to reference material and/or critical expression levels PD-L1, HER2, ER...

Role of cell lines & histoids for IHC test development

- 1. Limited access to relevant tissues rare incidences
 - ALK (lung), ROS1, Myogenin..
- 3. Limited access to reference material and/or critical expression levels
 - PD-L1, HER2, ER...

-QMS Auditing

www.histocyte.com

Cell lines ALK and ROS1 being +/-HER2, ER, PR and PD-L1 with dynamic range

www.statlab.com

Histoids / Faux tissue ALK +/-HER2, PD-L1 with dynamic range

Starting help to guide

development -

validation still required....

Histoids / Faux tissue – TruQ IHC controls

Tissue core with IHC 3+ and IHC 2+ almost identical concerning expression levels.

No IHC 1+ tissue

Design seems less adequate for "precision testing" for HER2 IHC both "classical" and HER2 low.

Role of cell lines for IHC test development

HER2 Analyte Control^{DR}

Cell line controls for immunohistochemistry and in situ hybridization.

Research Use Only

PRODUCT AVAILABILITY

Product Code	Product Description
HCL026	X2 Cut slides
HCL027	X5 Cut slides
HCL028	X1 Cell microarray block

APPLICATION

This product is suitable for use in immunohistochemistry and in situ hybridization.

MATERIALS

Four formalin fixed paraffin embedded cell lines with a dynamic range (DR) of expression for Human Epidermal growth factor Receptor 2 (HER2).

Cell line A: Breast adenocarcinoma Cell line B: Breast adenocarcinoma Cell line C: Gastric adenocarcinoma Cell line D: Breast adenocarcinoma

Cells are fixed in 10% neutral buffered formalin and paraffin wax embedded. Sections are cut at 4µm, mounted on positively charged slides and baked overnight at 37°C.

Cell microarrays (CMA) contain cores that are 1.5-2mm in diameter and 3-3.5mm in length. It is possible to obtain over 300 sections depending on thickness.

Expression Profile

Cell Line	IHC for HER2	FISH for HER2 gene amplification
A	0	Non-amplified
В	1+	Non-amplified
C	2+	Equivocal
D	3+	Amplified

Storage and Handling

Store at 2-8°C. Do not freeze (for expiration date please see the product label)

WARNINGS AND PRECAUTIONS

- 1. The product is intended for research use only
- It is the responsibility of the end user to determine suitability with their reagents and procedures within their laboratory.
- Do not use after expiration date printed on product labels. The user must validate any storage conditions other than those specified in the package insert.

TROUBLE SHOOTING

For further help please feel free to contact HistoCyte Laboratories Ltd at info@histocyte.com or call +44 (0)191 603 1007.

For updates and additional product information please visit: www.HistoCyte.com

In NordiQC run B34 10% of the participants used cell lines as onslide control

Still need evidence/proof (VALIDATION) how to correlate any change in staining pattern in cell lines for accuracy in tissues of breast carcinoma.

Tissue and cell line expression robustness (too fragile or too stabile)? What expression levels characterizes a successful vs insuccessful test? Impact on section thickness? Pattern on different assays?

Correlation of IHC for HER2 – accurate PATHWAY – cell lines and tissues

1+

Cell lines (HCL028 Histocyte)

2+3+ 2+ AMP 1+ 3+

Breast carcinomas

Correlation of IHC for HER2 – (inaccurate) PATHWAY – cell lines and tissues

Cell lines (HCL028 Histocyte)

Correlation of IHC for HER2 – HercepTest 2' Gen – cell lines and tissues

Cell lines (HCL028 Histocyte)

Correlation of IHC for HER2 – SP3 – cell lines and tissues

Cell lines (HCL028 Histocyte)

Breast carcinomas

Correlation of IHC for HER2 – cell lines and scoring

DIA/AI software algorithms might be applied to separate adequate vs inadequate result H-score to see if within range for acceptable or outside (e.g. <20 no pass, ≥20 pass...

1+ 1+ 0

Cell lines (HCL028 Histocyte)

Breast carcinoma 1+

The needs for cell lines as Quality tool for Accuracy/Precision

- Need to map staining characteristics for most commonly used IHC assays
 - The different assays will provide different patterns
- Need to identify change in patterns being critical with risk of false negative / false positive results
 - Each assay most likely will have different patterns / tresholds
- Need to integrate software as digital image analysis (DIA) or artificial intelligence (AI) to secure reproducibility
 - Identification of DIA/AI QC-score for successful versus insuccessful test

- The DIA/AI QC-scores must be validated for each IHC assay both with focus on expected level and critical levels
 - Large scale testing on e.g. breast carcinomas with the dynamic and critical range of the target analyte
 - Both to identify e.g. "classical" HER2 overexpression and the novel HER2 low category

No-Pass

ine

Pass?

Pass

Analytical standards – IHC versus clinical chemistry; Calibrators

Steven A. Bogen, MD, PhD; David J. Dabbs, MD; Keith D. Miller, FIBMS; Søren Nielsen, BLS; Suzanne C. Parry, BSc(Hons), MSc, FIBMS; Matthias J. Szabolcs, MD, PhD; Nils t'Hart, MD, PhD; Clive R. Taylor, MD, PhD; Emina E. Torlakovic, MD, PhD

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0031-RA)

ZR3 - LDT method 1

22C3 CDx - SK006

Analytical standards – IHC versus clinical chemistry; Calibrators

Developmental and validatation phase to correlate LOD*/analytical sensitivity in microbeads versus diagnostic accuracy and sensitivity for;

ER, HER2, PD-L1 and p53

Figure 5. Illustration of the survey tool for correlating clinical accuracy (from the tissue microarray data) with analytic sensitivity (from the calibrator data). The calibrators are at up to 10 different concentrations, for example levels 1–10. The middle row depicts negative controls. Abbreviations: BCS, Boston Cell Standards; TMA, tissue microarray.

A Consortium for Analytic Standardization in Immunohistochemistry

Steven A. Bogen, MD, PhD; David J. Dabbs, MD; Keith D. Miller, FIBMS; Søren Nielsen, BLS; Suzanne C. Parry, BSc(Hons), MSc, FIBMS; Matthias J. Szabolcs, MD, PhD; Nils t'Hart, MD, PhD; Clive R. Taylor, MD, Pl Emina E. Torlakovic, MD, PhD

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0031-RA)

Figure 2. Illustration of a series of immunohistochemistry calibrators after staining. The numbers refer to calibrator levels, from low (1) to high (10) analyte concentrations. A, The illustration shows that rim staining is stronger than central staining because the analyte is attached to the microbead surface. In this example, level 5 represents the lower limit of detection (LOD). B, Images of microbeads from calibrators with an LOD at level 5.

Boston Cell Standards

Reference standard materials for IHC; Calibrators – LOD* - PD-L1

Boston Cell Standards LLC

CERTIFICATE OF ANALYSIS

DESCRIPTION **IHCalibrators** (10 levels) Product Description: Mean Diameter: 7-8 micron PD-L1 (extracellular Domain) Target: CONCENTRATION Boston Cell Standards 0000 Average PD-L1 Molecules per Microbead 0 Level 10 603,077 598,591 level 9 479,714 0 level 356.351 0 228,502 Level 6 0 116,354 Level 5 0 00 53.551 Level 4 0 22,149 Level 3 00 9,550* Level 2 -Level 1 - 2,197* 2 are estimates based on the amount of PD-L1 a m higher levels. The concentrations were too low for direct measurement 0

* LOD; Limit of detection / level of analytical sensitiviy

Bogen, SA. 2019. A root cause analysis into the high error rate in clinical immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 27(5) 329-338.

Sompuram, SR, K Vani, AK Schaedle, A Balasubramanian, & SA Bogen. 2019. Selecting an optimal positive IHC control for verifying retrieval. J. Histochem. Cytochem. 67(4):273-283.

Sompuram, SR, K Vani, AK Schaedle, A Balasubramanian, & SA Bogen. 2018. Quantitative assessment of immunohistochemistry laboratory performance by measuring analytic response curves and limits of detection. *Arch Pathol Lab Med.* 142 (7):851-862.

Reference standard materials for IHC; Calibrators – LOD – PD-L1 22C3

ARTICLE OPEN Quantitative comparison of PD-L1 IHC assays against NIST standard reference material 1934

Seshi R. Sompuram¹, Emina E. Torlakovic^{2,3}, Nils A. 't Hart⁴, Kodela Vani¹ and Steven A. Bogen¹[⊠]

© The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2021, corrected publication 2021

Mod Pathol. 2022;35(3):326-332.

22C3 LOD 356.351 mol. pr microbead

Level 10	603,077	
Level 9 -	598,591	
Level 8 -	479,714	
Level 7 -	356,351	
Level 6 -	228,502	
Level 5 -	116,354	
Level 4 -	53,551	
Level 3 -	22,149	
Level 2 -	9,550*	
Level 1 -	2,197*	

Fig. 2 Lower limit of detection (LOD) of various PD-L1 assays (x axis). Lower numbers (on the y axis) equate to greater sensitivity. Each dot represents a separate IHC laboratory test. Blue dots depict FDA-cleared assays in clinical laboratories, green dots for laboratory-developed tests (LDTs), and red diamonds for FDA-cleared assays as performed by a reference laboratory. Tissue staining in Fig. 2 was performed by these reference labs. For enhanced clarity, the LDT data are positioned slightly to the right of the vertical lines.

IHC Calibrator 10 levels HER2 – Boston Cell Standards - PATHWAY

Correlation of IHC for HER2 – Microbeads – Accuracy/Precision

9/24/2024

Correlation of IHC for HER2 – Microbeads – Accuracy/Precision

Breast carcinomas

N=15 (NordiQC runs B31, B32, B33)

			PATHWAY Standard LOD 1,981,264 HER2 mol.	PATHWAY – red. HIER & Ab LOD 2,669,835 HER2 mol.	PATHWAY + OptiView LOD 1,274,947 HER2 mol.
_	Ň	0	2	5	0
ssica	5 1+ 7	3	3	3	
cla	HER	2+ Unamplified	1	2	3
ER2		2+ Amplified	3	1	3
Т		3+ Amplified	6	4	6

Reduced analytical sensitivity (LOD) provided a less accurate HER2 result for both classical overexpression and HER2 low

Increased analytical sensitivity (LOD) provided a less accurate HER2 result for HER2 low

IHC Calibrator 10 levels HER2 – Boston Cell Standards – HercepTest Mo.

Standardized controls for Immunohistochemistry

- Precision testing for precision medicine needs precision IHC controls
- At present no "golden standard IHC controls" to fit all IHC biomarkers
- A mixture of carefully selected external tissue controls and non-tissue based controls as cell lines and/or microbeads seem to be best practice
- Cell lines and microbeads have potential to monitor IHC test precision and accuracy, <u>BUT</u> still require extensive documentation and data how to use these

Different performances related to IHC assays Different tresholds for adequate vs inadequate result Software DIA/AI QC-tools to be developed and verified

ed by these reference labs. For enhanced clarity, the LDT

Application of TMA for QC of diagnostic IHC

Daily IHC control for the majority of routine markers:

Appendix Liver Pancreas Tonsil

Each slide stained and evaluated has essential information of the obtained sensitivity and specificity In contrast only using 1 external tissue run control, no information is available for the single slide evaluated

Application of TMA for QC of diagnostic IHC

	TMA On-slide control	TMA Run / batch control	Remarks
Missing reagent FN in patient test	Yes	No – only control slide	Potential internal pos. control only indicator of protocol performed
Wrong antibody FP in patient test	Yes	No – only control slide	
Inappropriate protocol performance - Drying out etc FN / FP in patient test	Yes	No – only control slide	Potential internal pos. control only indicator of protocol performed

Errors seen for all IHC automated and semi-automated IHC platforms

On-slide controls....

REVIEW ARTICLE

(Appl Immunohistochem Mol Morphol 2015;23:1–18)

Standardization of Positive Controls in Diagnostic Immunohistochemistry: Recommendations From the International Ad Hoc Expert Committee

Emina E. Torlakovic, MD, PhD,*† Soren Nielsen, HT, CT,\$\$ Glenn Francis, MBBS, FRCPA, MBA, FFSc (RCPA). "
 # John Garratt, RT,†** Blake Gilks, MD, FRCPC,†††

 Jeffrey D. Goldsmith, MD,\$* Jason L. Hornick, MD, PhD,\$\$ Elizabeth Hyjek, MD, PhD,*
 Merdol Ibrahim, PhD, "
 Keith Miller, FIBMS. "
 Eugen Petcu, MD, PhD,"
 Paul E. Swanson, MD, "
 ## Xiaoge Zhou, MD,***††† Clive R. Taylor, MD, PhD,\$
 and Mogens Vyberg, MD\$*

RESEARCH ARTICLE

(Appl Immunohistochem Mol Morphol 2017;25:308-312)

An Audit of Failed Immunohistochemical Slides in a Clinical Laboratory: The Role of On-Slide Controls

Carol C. Cheung, MD, PhD, JD,* † Clive R. Taylor, MD, DPhil, ‡ and Emina E. Torlakovic, MD, PhD †

Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update

Kimberly H. Allison, MD¹; M. Elizabeth H. Hammond, MD²; Mitchell Dowsett, PhD³; Shannon E. McKernin⁴; Lisa A. Carey, MD⁵; Patrick L. Fitzgibbons, MD⁶; Daniel F. Hayes, MD⁷; Sunil R. Lakhani, MD^{8,9}; Mariana Chavez-MacGregor, MSc¹⁰; Jane Perlmutter, PhD¹¹; Charles M. Perou, PhD⁵; Meredith M. Regan, ScD¹²; David L. Rimm, MD, PhD¹³; W. Fraser Symmans, MD¹⁰; Emina E. Torlakovic, MD, PhD^{14,15}; Leticia Varella, MD¹⁶; Giuseppe Viale, MD^{17,18}; Tracey F. Weisberg, MD¹⁹; Lisa M. McShane, PhD²⁰; and Antonio C. Wolff, MD²¹

J Clin Oncol 38:1346-1366. © 2020 by American Society of Clinical Oncology

"even for automated stainers, where it cannot be guaranteed that every slide in fact receives identical treatment".

Fig. 5 Evolution of use of on-slide controls in NordiQC

Evolution in the Use of On-Slide Controls for Diagnostic Immunohistochemistry in the Era of Precision Testing Heidi Lykke Kristoffersen, Rasmus Røge, Søren Nielsen. NordiQC, Aalborg Universityhospital, Denmark. USCAP 2023

Use of on-slide controls in NordiQC

Application of TMA for QC of diagnostic IHC

	RESEARCH ARTICLE		TABLE 1. Categories of Failed IHC Slides		
	(Appl Immunohistochen	1 Mol Morphol 2017:25:308–312)	Failed IHC Slide Category	Description	Comments
	An Audit of Failed Imm	unohistochemical Slides in a	1	On-slide control too weak, patient tissue negative	Correct primary Ab was applied, but test sensitivity
	Clinical Laboratory: Th Carol C. Cheung, MD, PhD, JD,*† Clive R. To	e Role of On-Slide Controls aylor, MD, DPhil,‡ and Emina E. Torlakovic, MD, PhD†	2	On-slide control negative, patient tissue negative	is possibly too low Total slide failure; the result of the test does not suggest possible cause of the failure
	150 -	Platform	3	On-slide control too weak, patient tissue weakly positive but no internal control	May indicate decreased technical sensitivity
2% orror rato:		2	4	On-slide control negative, patient tissue weakly positive but no internal control	There is uncertainty whether the correct primary Ab was applied or if there was significantly decreased sensitivity
276 error rate,			5	No on-slide control, patient tissue negative	Uncertain results; cannot distinguish if the staining was optimal, suboptimal, or total failure
Class I 0,8%	ten la		6	No on-slide control, patient tissue positive	No internal control present; lesion positive; failed only if there is uncertainty over whether the proper primary Ab was applied
	3		7	Failed signal-to-noise ratio	Usually too high background; potential false positive, involving both patient sample and on-slide external control
(452/22.234 slides)	50 -		8	Counter staining problem	If severe, may render result
(,,			9	Wrong protocol	Wrong protocol selected when >1 protocol for the given primary Ab exists in the system
			10	Uneven staining	Large or critical areas of the patient tissue or controls were missed by uneven staining
		5 6 7 8 9 10 11	11	Wrong control	Either wrong tissue control or areas relevant to the test were missing (detached during staining or paraffin
	F	ailed Slide Type			block with control tissue cut through)
	FIGURE 1. Frequency of t by category and platform.	ailed immunohistochemistry slides	IHC indi	cates immunohistochemistry.	
Application of TMA for QC of diagnostic IHC

A: On-slide controls

IHC slides stained for ALK (Class II),same run, same instrument, same protocol14/19 passed5/19 failed (5 x 150 USD)

B: Batch-control - Theoretically:

Batch control <u>failed</u> by same conditions as above 0/19 passed 19/19 failed (no consistent internal control...) (20 x 150 USD)

C: Batch-control - Theoretically: Batch control **passed** by same conditions as above 19/19 passed 0/19 failed (the 5 failed slides not identified....) (Cost...???)

Conclusions

Controls are essential to evaluate IHC results:

- Tissue controls used to calibrate IHC assay
- Tissue controls processed by variables applied in the laboratory is needed to evaluate on robustness
- Tissue controls to evaluate analytical potential and value
- Tissue controls to monitor consistency of IHC assay
- Use of critical tissue controls / ICAPCs with relevant range of target analyte is crucial

Conclusions

Focus on external tissue controls is central to standardize and optimize IHC:

- On-slide TMA controls are preferable to 1 bacth control
- Internal tissue controls are of limited value
- Need to generate consensus guidelines on ICAPCs for all IHC tests which tissues, which staining pattern. Interaction of industry, EQA and pathology organisations and societies required.
- Need to identify best practice controls tissues, beads, cell lines.. for type 2 IHC

External tissue control tool box

E Torlakovic et al. AIMM, 2017; 25:227-230 Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 4

Questions and/or comments

Thank You for the attention and.....