

Henrik Hager

Dept. of Clinical Pathology Vejle Hospital

Lung Carcinoma

Lung carcinoma derives from stem cells in the lung epithelium

Lung Carcinoma

Age-adjusted Cancer Death Rates,* Males by Site, US, 1930-2008

Age-adjusted Cancer Death Rates*, Females by Site, US, 1930-2009

*Per 100,000, age adjusted to the 2000 US standard population.

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the liver, lung and bronchus, and colon and rectum are affe by these coding changes.

Source: US Mortality Volumes 1930 to 1959, US Mortality Data 1960 to 2008, National Center for Health Statistics, Centers for Disease Control and Prevention.

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the lung and bronchus, colon and rectum, and ovary are affected by these coding changes.

02012, American Cancer Society, Inc., Surveilance Re: Source: US Mortality Volumes 1930 to 1959, US Mortality Data 1960 to 2009, National Center for Health Statistics, Centers for Disease Control and Prevention.

@2013, American Cancer Society, Inc., Surveillance Research

Lung Carcinoma

EBUS, EUS

Mediastinoscopy

© Elsevier Inc 2006. Hawes & Fockens: Endosonography

Esophagus

Fine needle biopsy

Coarse needle biopsy

M

Patoanatomical specimen

Visualization (Staining)

Non Small Cell Lung Carcinoma (NSCLC)

Kromogen (farvestof)

Visualiseringssystem (enzymer) Sekundært antistof Primært antistof

Antigen Cellens cytoplasma Cellekerne

Non Small Cell Lung Carcinoma (NSCLC)

Step 1 NE morphology, large cells LCNEC **Positive Histology** NE IHC. ttf1+/-. CK+ **Positive Cytology** NE morphology, small cells SCLC no/small nucleoli NE IHC. ttf1+/-. CK+ Keratinization, pearls and/or SQCC intercellular bridges Algorithm modified from Histology: lepidic, papillary and/or acinar architecture. Cytology: 3-D arrangement, foamy, vacuolar cytoplasm No clear SQCC or prominent eccentrical **ACCmorphology** nucleoli Diagnosis of Lung Cancer in Small Biopsies and Cytology NSCLC (NOS) Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification Step 2 ADC marker -William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Ceisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ienacio Wistuba, MD; Douglas B, Flieder, MD; Wilbur Franklin, MD; Adi Cazdar, MD; Apply ancillary panel of ADC SQCC marker + Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Kerr, MD; Iver Petersen, MD; Victor Roggli, MD; SQCC or ADC marker Erik Thunnissen, MD; Ming Tsao, MD ADC marker + ADC marker + ADC marker -SQCC marker + SQCC marker -SQCC marker -**NSCLC, NOS** NSCLC, NOS possible adenosquamous ca. Step 3 Molecular analysis EGFR and ALK

Diagnosis of Lung Cancer in Small Biopsies and Cytology Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Ceisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Flieder, MD; Wilbur Franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W; Henderson, MD; Keith M. Kerr, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumniseen, MD; Ming Tsao, MD

Step 1 **Positive Histology Positive Cytology** Keratinization, pearls and/or SQCC intercellular bridges

Diagnosis of Lung Cancer in Small Biopsies and Cytology Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Geisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Hieder, MD; Wilbur franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Keri, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumissen, MD; MD; MIng Isao, MD

CD56

Step 1 NE morphology, large cells LCNEC **Positive Histology** NE IHC. ttf1+/-. CK+ **Positive Cytology** NE morphology, small cells SCLC no/small nucleoli NE IHC, ttf1+/-, CK+

Diagnosis of Lung Cancer in Small Biopsies and Cytology

Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Ceisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Fleder, MD; Wilbur Franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Ker, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumissen, MD; Ming Tsao, MD

Chromogranin A

Diagnosis of Lung Cancer in Small Biopsies and Cytology Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Geisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Hieder, MD; Wilbur franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Kerr, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumiseen, MD; Ming Tsao, MD

Synaptophysin

Diagnosis of Lung Cancer in Small Biopsies and Cytology

Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Geisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Hieder, MD; Wilbur franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Kerr, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumissen, MD; Ming Isao, MD

Cytokeratin

Diagnosis of Lung Cancer in Small Biopsies and Cytology

Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Ceisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Hieder, MD; Wilbur franklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M. Kerr, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thumiseen, MD; MD; Ming Isao, MD

ttfl

Diagnosis of Lung Cancer in Small Biopsies and Cytology

Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elisabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Ceisinger, MD; Yasushi Yatabe, MD; Yuichi Ishikawa, MD; Ignacio Wistuba, MD; Douglas B. Hieder, MD; Wilbur Tranklin, MD; Adi Cazdar, MD; Philip S. Hasleton, MD; Douglas W. Henderson, MD; Keith M, Ker, MD; Iver Petersen, MD; Victor Roggli, MD; Erik Thurnissen, MD; Ming Tsao, MD

(+Cytokeratin 7)

Adenocarcinoma

CK5/6

P63

ttfl

Napsin

Squamous carcinoma

Problems:

Adenocarcinoma can be P63+

p40 is the Best Marker for Diagnosing Pulmonary Squamous Cell Carcinoma: Comparison With p63, Cytokeratin 5/6, Desmocollin-3, and Sox2

Takahiro Tatsumori, MD,*† Koji Tsuta, MD, PhD,* Kyohei Masai, MD,* Tomoaki Kinno, MD,* Tomoko Taniyama, MD,* Aklinko Yoshida, MD, PhD,* Kenji Suzuki, MD, PhD,† and Hitoshi Tsuda, MD, PhD,*

Problems:

Adenocarcinoma can be P63+

			No. Cases (%) Immunoreactivity		
	Marker	Total	Negative	Positive	Mean Staining Score (0-300)
SQC	p40	158	5 (3.2)	153 (96.8)	169
	p63	154	4 (2.6)	150 (97.4)	237
Non-SQC	p40	418	405 (96.9)	13 (3.1)	1.3
	p63	419	305 (72.8)	114 (27.2)	16.9

p40 is the Best Marker for Diagnosing Pulmonary Squamous Cell Carcinoma: Comparison With p63, Cytokeratin 5/6, Desmocollin-3, and Sox2

Takahiro Tatsumori, MD,*† Koji Tsuta, MD, PhD,* Kyohei Masai, MD,* Tomoaki Kinno, MD,* Tomoko Taniyama, MD,* Akihiko Yoshida, MD, PhD,* Kenji Suzuki, MD, PhD,† and Hitoshi Tsuda. MD. PhD*

Table 2. Sensitivity, specificity, PPV and NPV of markers used in thisstudy [% (positive/total stained)]

Marker	Subtype	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
ΔΝρ63	SCC	100 (16/16)	100 (32/32)	100 (16/16)	100 (32/32)
p63	SCC	100 (16/16)	88 (28/32)	80 (16/20)	100 (28/28)
CK5/6	SCC	81 (13/16)	100 (32/32)	100 (13/13)	91 (32/35)
34βE12	SCC	94 (15/16)	47 (15/32)	47 (15/32)	94 (15/16)
TTF1	AC	80 (20/25)	87 (20/23)	87 (20/23)	80 (20/25)
Napsin A	AC	64 (16/25)	100 (23/23)	100 (16/16)	72 (23/32)
CK7	AC	100 (25/25)	35 (8/23)	63 (25/40)	100 (8/8)
CK8/18	AC	100 (25/25)	35 (8/23)	63 (25/40)	100 (8/8)

Sensitivity = TP/TP+FN; Specificity = TN/TN+FP; Positive predictive value (PPV) = TP/ TP+FP; Negative predictive value (NPV) = TN/TN+FN. FN indicates false negatives; FP, false positives; TN, true negatives; TP, true positives.

> Int J Clin Exp Pathol 2014;7(7):4247-4253 www.ijcep.com /ISSN:1936-2625/JJCEP0000624

Original Article ΔNp63, CK5/6, TTF-1 and napsin A, a reliable panel to subtype non-small cell lung cancer in biopsy specimens

Table 2. Sensitivity, specificity, PPV and NPV of markers used in thisstudy [% (positive/total stained)]

Marker	Subtype	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
ΔNp63	SCC	100 (16/16)	100 (32/32)	100 (16/16)	100 (32/32)
p63	SCC	100 (16/16)	88 (28/32)	80 (16/20)	100 (28/28)
CK5/6	SCC	81 (13/16)	100 (32/32)	100 (13/13)	91 (32/35)
34βE12	SCC	94 (15/16)	47 (15/32)	47 (15/32)	94 (15/16)
TTF1	AC	80 (20/25)	87 (20/23)	87 (20/23)	80 (20/25)
Napsin A	AC	64 (16/25)	100 (23/23)	100 (16/16)	72 (23/32)
CK7	AC	100 (25/25)	35 (8/23)	63 (25/40)	100 (8/8)
CK8/18	AC	100 (25/25)	35 (8/23)	63 (25/40)	100 (8/8)

Sensitivity = TP/TP+FN; Specificity = TN/TN+FP; Positive predictive value (PPV) = TP/ TP+FP; Negative predictive value (NPV) = TN/TN+FN. FN indicates false negatives; FP, false positives; TN, true negatives; TP, true positives.

> Int J Clin Exp Pathol 2014;7(7):4247-4253 www.ijcep.com /ISSN:1936-2625/JJCEP0000624

Original Article ΔNp63, CK5/6, TTF-1 and napsin A, a reliable panel to subtype non-small cell lung cancer in biopsy specimens

Table 3. Algorithm for subtyping of poorly-differentiated non-small celllung carcinomas according to immunohistochemical staining in lungbiopsies

ΔΝρ63	CK5/6	TTF1	Napsin A	Diagnosis
+	+	-	-	Squamous cell carcinoma
+	-	-	-	Squamous cell carcinoma
-	-	+	+	Adenocarcinoma
-	-	+	-	Adenocarcinoma
-	-	-	-	Poorly-differentiated
				non-small cell carcinoma

Int J Clin Exp Pathol 2014;7(7):4247-4253 www.ijcep.com /ISSN:1936-2625/JJCEP0000624

Original Article Δ Np63, CK5/6, TTF-1 and napsin A, a reliable panel to subtype non-small cell lung cancer in biopsy specimens

Multiplex

Rapid Multiplex Immunohistochemistry Using the 4-antibody Cocktail YANA-4 in Differentiating Primary Adenocarcinoma From Squamous Cell Carcinoma of the Lung

Emmy Yanagita, MT,* Naoko Imagawa, MT,* Chiho Ohbayashi, MD,† and Tomoo Itoh, MD*

Appl Immunohistochem Mol Morphol • Volume 19, Number 6, December 2011

Multiplex

Rapid Multiplex Immunohistochemistry Using the 4-antibody Cocktail YANA-4 in Differentiating Primary Adenocarcinoma From Squamous Cell Carcinoma of the Lung

Emmy Yanagita, MT,* Naoko Imagawa, MT,* Chiho Ohbayashi, MD,† and Tomoo Itoh, MD*

Appl Immunohistochem Mol Morphol • Volume 19, Number 6, December 2011

Problems:

Differential diagnosis between primary and metastatic carcinoma

Other (adeno) carcinomas are positive for ttfl

Table 1

Summary of immunohistochemistry results.

	Total cases	SPT24	8G7G3/1	Р
Lung	374			
Adenocarcinoma	185	134 (72.4%)	121 (65.4%)	0.08
Large Cell	47	22(46.8%)	17(36.2%)	0.201
Carcinoid	23	14(60.8%)	4(17.4%)	0.003
Squamous Cell	97	14(16.8%)	1(1.0%)	0.003
Unclassified	22	10(45.5%)	7(31.8%)	0.26
Bladder	98	5 (5.1%)	5 (5.1%)	NS
Colon	120	3 (2.5%)	3 (2.5%)	NS
Prostate	160	2(1.2%)	2(1.2%)	NS
Stomach	110	1(0.9%)	1(0.9%)	NS
Salivary Gland	56	1(1.8%)	1(1.8%)	NS
Squamous cell carcinoma of head and neck	38	0(0%)	0(0%)	NS
Pancreatic adenocarcinomas	110	0(0%)	0(0%)	NS
Breast	34	0(0%)	0(0%)	NS

NS: not significant

NIH Public Access Author Manuscript

Published in final edited form as:

Appl Immunohistochem Mol Morphol. 2010 March ; 18(2): 142-149. doi:10.1097/PAI.0b013e3181bdf4e7

Comparison of thyroid transcription factor-1 expression by two

monoclonal antibodies in pulmonary and non-pulmonary primary

tumors

Andres Matoso, Kamaljeet Singh, Rafik Jacob, Wesley O. Greaves, Rosemarie Tavares, Lelia Noble, Murray B. Resnick, Ronald A. DeLellis, and Li J. Wang Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown Medical School, Providence, RI.

PanCK < CK7 ttf1 Napsin CK20 cdx2 ER GCDFP15 PSA Vim CK5/6 P63 CD10 RCC Ca125 PAX8 WT1 GATA3

Colon

Mamma

PanCK -СК7 <>> ttf1 Napsin СК20 cdx2 — ER GCDFP15 PSA Vim CK5/6 P63 CD10 RCC Ca125 PAX8 WT1 GATA3

Upper GI

PanCK СК7 🧹 🗖 ttf1 Napsin СК20 cdx2 ER GCDFP15 PSA Vim СК5/6 — P63 CD10 RCC Ca125 PAX8 WT1 GATA3

Urothelial carcinoma

PanCK < CK7 ttf1 Napsin CK20 cdx2 ER GCDFP15 PSA Vim CK5/6 P63 CD10 RCC Ca125 PAX8 WT1 GATA3

Renal cell carcinoma

PanCK < CK7 ttf1 Napsin CK20 cdx2 ER GCDFP15 PSA < Vim CK5/6 P63 CD10 RCC Ca125 PAX8 WT1 GATA3

KI1 . CK7 ttf1 Napsin CK20 cdx2 ER — GCDFP15 PSA Vim 🧹 CK5/6 P63 CD10 RCC Ca125 PAX8 🧹 WT1 GATA3

Endometrial cancer

PanCK ~ CK7 ttf1 Napsin CK20 cdx2 ER — GCDFP15 PSA Vim CK5/6 P63 CD10 RCC Ca125 -PAX8 WT1 GATA3

Ovarian cancer

Lung Cancer Diagnosis and prediction

Calretinin WT1 D2-40 CK7 Vim CK5/6

Diagnosis of direct invasion of mesothelioma

Lung Cancer Diagnosis and prediction

Stage at diagnosis

Region Syddanmark Sygehus Lillebælt

Patoanatomical specimen

Visualization (Staining)

Adenocarcinoma

Squamous carcinoma

Large cell carcinoma

Small cell carcinoma

Non Small Cell Lung Carcinoma (NSCLC)

Region Syddanmark Sygehus Lillebælt

Cytology

Morfologi

Thinprep morfologi

Cellblock

Immunocytologi -

Cellblock

Immuncytologi

Parafin

Indstøbning

1.	Centrifuger materialet 10 min. ved 3000 omdr./min.	レ
2.	Hæld supernantanten fra.	n
3.	Tilsæt 3 dråber humant plasma.	Ine
4.	Opslem, med pipetten, forsigtigt bundfaldet i plasmaen.	
5.	Tilsæt 2 dråber thrombin. Dannes der ikke et koagel indenfor 1 minut; tilsæt 1 dråbe BT.	0
6.	Tilsæt 4% neutralt bufferet formaldehyd.	2
7.	Åben en gazepose, træk den over reagensglasset.	
8.	Hæld koaglet i gazeposen.	6
9.	Læg posen i en kapsel med mikroskopi-nummeret.	60
10	. Dryp et par dråber hæmatein på koaglet.	0
11	I æg kanslen i en høtte med 4% neutralt huffet formaldehvd	

cellient C C AUTOMATED CELL BLOCK

Cellblock

Immuncytologi

HOLOGIC

Improved capture

- Vacuum-assisted filtration
- Captures available cells, maximizing cellularity even from small/scanty samples
- Built on ThinPrep® technology

Improved presentation

- Helps maintain crisp, clear cellular architecture
- Creates concentrations of cells within the block
- Reviews of cytology and cell block simultaneously
- Supports easier and more productive pathology review

Improved consistency

- High-quality blocks
- Fully automated with minimal operator dependency
- Less cross-contamination risk
- Consistently rapid processing time (45 minutes or less)

Kromogen (farvestof)

Visualiseringssystem (enzymer) Sekundært antistof

Primært antistof

Antigen Cellens cytoplasma Cellekerne

Oncogene 'drivers' in Adenocarcinoma

Oncogene 'drivers' in Adenocarcinoma

Unknown (32.5%) KRAS (35%) Gene Mutation ROS1 (1%)-Gene Fusion KIF5B-RET (1.5%)-Gene Amplification Unknown HER2 (2%) -EGFR (15%) ALK (5% -oncogene **DELETION OR** POINT MUTATION GENE CHROMOSOME IN CODING AMPLIFICATION REARRANGEMENT SEQUENCE or DNA-DNA RNA RNA Protein Hyperactive fusion to actively nearby protein overproduced transcribed gene regulatory **DNA** sequence greatly causes normal overproduces protein to be fusion protein; overproduced or fusion protein is

hyperactive

Oncogene 'drivers' in Adenocarcinoma

autoactivates EGFR

EGFR

Lung Cancer Diagnosis and prediction

EGFR

EGFR

Lung Cancer Diagnosis and prediction

EGFR

Oncogene 'drivers' in Adenocarcinoma

Resistens

Lung Cancer Diagnosis and prediction

CrossMark

Novel EGFR mutation-specific antibodies for lung adenocarcinoma: Highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry

An Na Seo^{a,b,1}, Tae-In Park^{b,1}, Yan Jin^{a,c}, Ping-Li Sun^{a,c}, Hyojin Kim^{a,c}, Hyun Chang^d, Jin-Haeng Chung^{a,c,*}

^a Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Republic of Korea
^b Department of Pathology, Kyungpook National University College of Medicine, 680 Gukchaebosang-ro, Jung-gu, Daegu 700-842, Republic of Korea
^c Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
^d Department of Internal Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Republic of Korea

EGFR

Table 2

Diagnostic power of mutation-specific antibodies comparing with EGFR mutational status.

Mutation-specific antibodies	EGFR mutations	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Anti-EGFR E746_A750 del	E746_A750 deletion				
	≥Score 1 as positive	94.1%	96.1%	80.0%	99.0%
	≥Score 2 as positive	70.6%	99.0%	92.3%	95.3%
	≥Score 3 as positive	29.4%	100.0%	100.0%	89.6%
	All deletions in exon 19				
	≥Score 1 as positive	54.8%	96.6%	85.0%	86.0%
	≥Score 2 as positive	40.3%	99.4%	96.2%	82.7%
	≥Score 3 as positive	16.1%	100.0%	100.0%	77.4%
Anti-EGFR L858R	L858R				
	≥Score 1 as positive	93.5%	50.0%	30.7%	97.0%
	≥Score 2 as positive	80.4%	89.7%	64.9%	95.1%
	≥Score 3 as positive	41.3%	100.0%	100.0%	87.8%

Abbreviations: PPV, positive predictive value; NPV, negative predictive value.

Novel EGFR mutation-specific antibodies for lung adenocarcinoma: Highly specific but not sensitive detection of an E746.A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry

An Na Seo^{a,b,1}, Tae-In Park^{b,1}, Yan Jin^{a,c}, Ping-Li Sun^{a,c}, Hyojin Kim^{a,c}, Hyun Chang^d, Jin-Haeng Chung^{a,c,e}

CrossMarl

Algorithm

EGGER Drocgene 'drivers' in Adenocarcinoms

EGFR

Oncogene 'drivers' in Adenocarcinoma

Sequencing

Chromatograph

EGFR

Oncogene 'drivers' in Adenocarcinoma

ROS1 (1%) HER2 (2%) BRAF (4%) HER2 (5%) HER2 (

mutationspecific primer

Loop

DNA-

RNA

Unknown (32.5%) KRAS (35%) Gene Mutation ROS1 (1%)-Gene Fusion KIF5B-RET (1.5%)-Gene Amplification Unknown HER2 (2%) -EGFR (15%) - ALK (5%) MET (4% proto-oncogene **DELETION OR** POINT MUTATION CHROMOSOME GENE IN CODING AMPLIFICATION REARRANGEMENT SEQUENCE or -DNA RNA Protein Hyperactive fusion to actively nearby protein overproduced regulatory transcribed gene **DNA** sequence greatly causes normal overproduces protein to be fusion protein; overproduced or fusion protein is

hyperactive

Oncogene 'drivers' in Adenocarcinoma

Unknown (32.5%

Oncogene 'drivers' in Adenocarcinoma

KRAS (35%)

Rhabdomyosarcoma

Oncogene 'drivers' in Adenocarcinoma

Oncogene 'drivers' in Adenocarcinoma Unknown (32,5%) -- KRAS (35%) ROS1 (1% - Gene Fusion KIF5B-RET (1.5%) Gene Amplificatio Unknown HER2 (2%) BRAF (4%) -- MET (4%) EML4 -EML4/ALK ALK 2q23 Fusion

Figure 2: Waterfall plot showing response to crizotinib in patients with EML4-ALK NSCLC. Percent change in tumor burden relative to pretreatment baseline is represented. (Reproduced with permission from Kwak et al. N Engl J Med. 2010;363:1693-1703. Copyright © 2010, Massachusetts Medical Society.)

Detection of fusion protein

Detection of chromosomal changes

Detection of fusion RNA

Detection of fusion protein

Detection of fusion RNA

Detection of chromosomal changes

SPEC ALK Probe map (not to scale).

Inversion probe

SPEC ALK Dual Colar Break Apart Prabe hybridized to normal interphase cells as indicated by two orange/green fusion signals per nucleus.

Detection of fusion protein

Detection of fusion RNA

Different variants of EML4-ALK and non-EML4 fusion partners

Detection of fusion RNA

Different variants of EML4-ALK and non-EML4 fusion partners

Detection of fusion protein

ALK

Detection of chromosomal changes

Detection of fusion RNA

Detection of fusion protein

Immunohistolochemistry

Detects ALK independent of fusion partner

- MET (4%)

BRAF (4%) -

Detection of fusion protein

Immunhistologi

Supplier	Type/Clone	Product code	Data Sheet
Abcam	Monoclonal (rabbit, clone SP8)	ab16670	View
Abcam	Polyclonal rabbit antibody	ab4061	View
Abcam	Monoclonal (mouse, clone 5A4)	ab17127	View
Abgent	Polyclonal rabbit antibody	AP7600a	View
Abgent	Polyclonal rabbit antibody	AP7600b	View
BD Biosciences	Monoclonal (mouse, clone ALK1)	559254	
Beckman Coulter	Monoclonal (mouse, clone 62.463.2D5.2)	IM3312	<u>View</u>
<u>Biomeda</u>	Monoclonal (rabbit, clone B651)	V10408	View
<u>Dako</u>	Monoclonal (mouse, clone ALK1)	M7195	View
Diagnostic Biosystems	Polyclonal rabbit antibody	RP110	View
<u>GeneTex</u>	Monoclonal (mouse, clone 5A4)	GTX17127	<u>View</u>
<u>GeneTex</u>	Polyclonal rabbit antibody	GTX24061	<u>View</u>
Imgenex	Polyclonal rabbit antibody	IMG-80443	<u>View</u>
Lab Vision	Polyclonal rabbit antibody	RB-9001	<u>View</u>
Lab Vision	Monoclonal (mouse, clone 5A4)	MS-1104	View
Lab Vision	Monoclonal (rabbit, clone SP8)	RM-9108	<u>View</u>
Novocastra	Monoclonal (mouse, clone 5A4)	NCL-ALK	<u>View</u>
Santa Cruz Biotechnology	Monoclonal (mouse, clone ALK1)	sc-53157	<u>View</u>
Ventana Medical Systems	Monocional (mouse, clone ALK-01)	790-2918	<u>View</u>

<u>http://www.tissuemarkers.org/source.php?mol_id=2</u>

ALK (5%)

Unknown (32.5%

ROS1

KIESB-RET (1.59

HER2 (2%)

BRAF (4%)

Immunhistologi

Lung Novacastra

Characteristic constraints of the second sec

Detection of fusion protein

Immunhistologi

A Novel, Highly Sensitive Antibody Allows for the Routine Detection of *ALK*-Rearranged Lung Adenocarcinomas by Standard Immunohistochemistry

Mari Mino-Kenudson¹, Lucian R. Chirieac², Kenny Law², Jason L. Hornick², Neal Lindeman², Eugene J. Mark¹, David W. Cohen³, Bruce E. Johnson⁴, Pasi A. Jänne⁴, A. John lafrate¹, and Scott J. Rodig²

Immunhistologi

Virchows Arch (2012) 461:245–257 DOI 10.1007/s00428-012-1281-4

REVIEW AND PERSPECTIVES

Detection of fusion protein

- Gene Fusior

Gene Ampl Construction Gene Ampl Construction Construc

EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations

Erik Thunnissen • Lukas Bubendorf • Manfred Dietel • Göran Elmberger • Keith Kerr • Fernando Lopez-Rios • Holger Moch • Wlodzimierz Olszewski • Patrick Pauwels • Frédérique Penault-Llorca • Giulio Rossi

Unknown (32 5%)

BOS1 (19

HED2 (200)

BRAF (4%)

KIESB-RET (1.5%)

Oncogene 'drivers' in Adenocarcinoma

- ALK (5%)

Immunhistologi

 Table 1
 IHC protocols described in the literature

	Antibody	Source	HIER	Dilution	Incubation	Detection system
Yi et al. [46]	ALK1	Dako	EDTA, pH 8, 30 min	1/100	30 min at RT	Advance (Dako)
Yang et al. [43]	ALK1	Dako	EDTA, pH 8, 30 min	1/100	30 min at RT	Advance (Dako)
Paik et al. [47]	5A4	Abcam	CC1 (Ventana), 1 h	1/30	2 h at 42 °C	i-view (Ventana)
McLeer-Florin et al. [48]	5A4	Abcam	CC1 (Ventana), 1 h	1/50	2 h at 37 °C	i-view (Ventana)
Hofman et al. [45]	5A4	Abcam	pH 9, 40 min, 97 °C	1/50	30 min RT	EnVision Flex (Dako)
Kim et al. [27]	5A4	Novocastra	CC1 100 °C, 20 min	1/30	2 h at 42 °C	i-view (Ventana)
Mino-Kenudson et al. [49]	D5F3 D9E4	CST CST	EDTA pH 8 pressure cooker	1/500 ^a 1/100 ^b	Overnight	EnVision+ (Dako)
	ALK1	Dako		1/50 ^a 1/2 ^b		

HIER heat-induced epitope retrieval, EDTA ethylenediaminetetraacetic acid, RT room temperature, CST cell signaling technology

^a For anaplastic large cell lymphomas

^b For lung adenocarcinomas and inflammatory myofibroblastic tumours

hews Arch (2012) 461:245-257 10.1007/s00428-012-1281-4

AND PERSPECTIVES

EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations

rik Thunnissen - Lukas Bubendorf - Manfred Dietel öran Eimberger - Keith Kerr - Fernando Lopez-Rios olger Moch - Włodzimierz Olszewski trick Pauwels - Frédérique Penault-Llorea leith Paued

ALK

Detection of fusion protein

Immunhistologi

Table 2 IHC scoring systems

	Score			
	0	1+	2	3
Yi et al. [46]	No staining	Faint cytoplasmic staining	Moderate smooth cytoplasmic staining	Intense granular cytoplasmic staining in ≥10 % of tumour cells
Kim et al. [27]	No staining	Faint or weak staining intensity with >5 % tumour cells or any staining intensity with \leq 5 % tumour cells ^a	Moderate staining >intensity with >5 % tumour cells ^b	Strong and granular staining intensity with >5 % tumour cells ^c

^a Average of 14.7 % positively stained cells

^b Average of 58.2 % positively stained cells

^c Average of 97.3 % positively stained cells

Virchens Arch (2012) 461:245-257 DOI 10.1007/s00428-012-1281-4 REVIEW AND PERSPECTIVE

EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations

Erik Thunnissen - Lukas Bubendorf - Manfred Dietei -Göran Eimberger - Keith Kerr - Fernando Lopez-Rios Holger Moch - Włodzimierz Olszewski -Patrick Pauwels - Frédérique Penault-Llorca -Giulio Rossi

- ALK (5%)

- MET (4%)

BRAF (4%)

Detection of fusion protein

Unknown (32.5%

ROS1 (19

HER2 (2%)

BRAF (4%)

KIESB-RET (1.5%)

Oncogene 'drivers' in Adenocarcinoma

- ALK (5%)

MET (4%)

Immunhistologi

ESMO Association of ALK IHC and FISH, N=198

Detection of fusion protein

- Gene Fusio

Gene Am

- Unknow

36.7% of IHC+ are FISH+

EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations

Erik Thunnissen - Lukas Bubendorf - Manfred Dietel -Göran Elmberger - Keith Kerr - Fernando Lopez-Rios -Holger Moch - Wlodzimierz Olszewski -Patrick Pauwels - Frédérique Penault-Llorea -Gululo Rossi

Oncogene 'drivers' in Adenocarcinoma

KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBX7, FGFR3, NOTCH1, ERBB4, FGFR1, FGFR2

ALK, RET, ROS1, and NTRK1 fusion transcripts, in addition to targets designed to detect 5' and 3' ALK gene expression

Next generation seq.

Cancer Immunotherapy

Cancer Immunotherapy

Predictive marker ?

Cancer Immunotherapy

Programmed Death-Ligand 1 Immunohistochemistry in Lung Cancer In what state is this art?

Keith M. Kerr, MBChB, FRCPath, * Ming-Sound Tsao, MD, PhD, † Andrew G. Nicholson, DM, FRCPath, Yasushi Yatabe, MD, PhD,§ Ignacio I. Wistuba, MD, PhD, || and Fred R. Hirsch, MD, PhD, ¶ On behalf of the IASLC Pathology Committee

(J Thorac Oncol. 2015;10: 985-989)

TABLE 1. Summary of Published Findings for PD-L1 Immunohistochemistry in Therapeutic Trials

Drug	Biomarker Antibody	Rx Line	Definition of "Positive" ^a (%)	N Positive (%)	Positive Predictive Outcome	ORR % IHC pos. Cases	ORR % IHC neg. Cases	Ref.
Nivolumab	Dako 28-8	1st	≥ 5 in >100 cells	59	Yes	31 ^b	10	7,8 ^f
Nivolumab	Dako 28-8	≥2nd	≥5, ≥1	49, 56	No	15, 13	14, 17	9,10
Nivolumab + Ipilimumab	Dako 28-8	1st	\geq 5 in >100 cells	42	No	19	14	11
Nivolumab	Dako 28-8	≥2nd	≥5	33 ^c	Yes	24	14	12^{f}
Nivolumab	5H1 ^{<i>d</i>}	≥2nd	≥5, also studied TIICs	67	Yes	No data for lung	No data for lung	13
Pembrolizumab	Dako 22C3	Any	"Strong" ≥50, "Weak" 1–49	25, 70	Yes, Yes	37, 17	9	14
Pembrolizumab	Dako 22C3	1st	≥50, ≥1	?	Yes	47, 26	?	15
MPDL3280A	Roche Ventana, SP142	≥2nd	$\geq 10,^{e} \geq 5, \geq 1$ TIICs	13, 28, 56	Yes	83, 46, 31	18, 18, 20	16-18
MEDI-4736	Roche Ventana, SP263	≥2nd	Data not available	41	Yes	25	3	19,20

_ . .

SQC+

Alveolar macr.

EILN3N anti-PD-L1 (cell signalling)

Programmed Death-Ligand 1 Immunohistochemistry in Lung Cancer In what state is this art?

Keith M. Kerr, MBChB, FRCPath,* Ming-Sound Tsao, MD, PhD,† Andrew G. Nicholson, DM, FRCPath, Yasushi Yatabe, MD, PhD,§ Ignaccio I. Wistuba, MD, PhD,§ and Fred R. Hirsch, MD, PhD,§ On behalf of the IASLC Pathology Committee

Lung cancer research landscape – MoA group and phase

Future